ILC Detector R&D and Test Beams Test Beam Workshop Summary D. Karlen / University of Victoria & TRIUMF Fermilab Wine and Cheese Seminar January 19, 2007 ## ILC Detector R&D and Test Beams - This talk concludes the workshop on Test Beams for ILC Detector R&D, held during the past 3 days here in "One West" - a very impressive set of presentations and useful discussion - Here, I give a sampling of the presentations to give you a taste of the work that is underway and planned - the work is shown in context of the many interesting challenges that remain for the ILC detectors. # The great ILC detector challenge: precision - The strength of the ILC physics case lies in the precision of a broad range of measurements that can be achieved with electron-positron collisions - bringing important new information to allow a deeper understanding of Nature in the LHC era - The high level of precision required of the detector sub-systems presents the greatest challenge in the design of the ILC detectors - the ILC detectors need to exceed the performance of their predecessors by large factors ## ILC detector test beams - ILC detector tests in particle beams are becoming increasingly important - as sub-detector concepts develop into more refined prototypes – we must demonstrate that the challenging performance goals can be met in as realistic an environment as possible - There is some concern that with fewer high energy accelerators operating in the future, there may be insufficient test beam facilities - in some cases, very strong user support and arguments are needed to keep facility operational # Test Beams available for detector R&D - On Wednesday we heard from the test beam coordinators from several laboratories: - FNAL (Erik Ramberg) - SLAC (Carsten Hast) - KEK (Osamu Tajima) - LBNL (Devis Contarato) - IHEP-Beijing (Li Jia Cai) - IHEP-Protvino (Alexander Kozelov) - DESY (Ingrid Maria Gregor) - CERN (Christoph Rembser) - A nice summary of the facilities was presented by Marcel Demarteau # Test Beams available for detector R&D - All of the coordinators extended open invitations to perform detector tests at their facilities - services provided include: - cabling, DAQ, gas services, cranes, alignment, pixel test stands, telescopes, remote controlled moving stands - a real opportunity to further international cooperation - Unfortunately, US govt. is not extending an equally warm welcome to all international scientists - difficult visa process prevented the China and Russia test beam coordinators from attending the meeting - situation is improving but not yet solved # FNAL test beams - Impressed by the facilities here - workshop participants got a chance to see first hand - motivated by the ILC community, an extensive upgrade to the beamline was recently undertaken - commissioning has started - flexible spill structure | Energy
(GeV) | Present Hadron
Rate
MT6SC2 per 1E12
Protons | Estimated
Rate in New
Design
(dp/p 2%) | |-----------------|--|---| | 1 | | ~1500 | | 2 | | ~50K | | 4 | ~700 | ~200K | | 8 | ~5K | ~1.5M | | 16 | ~20K | ~4M | # FNAL meson test beam facility #### Possible Enhancement of Fermilab Beam Test - Further enhancements of the ILC R&D activities could be explored, with a concurrent scientific program, which could benefit the ILC community - MCenter beam line, which houses the MIPP experiment, is currently not scheduled - MCenter beamline - Beamline with excellent characteristics - Six beam species (p[±],K[±],π[±]) from 1 -- 85 GeV/c - Excellent particle id capabilities - Experimental setup - Could allow for better understanding of hadron-nucleus interactions, which could benefit our understanding of hadronic shower development, which is currently poorly understood - Nuclei of interest that can be measured with an upgraded MIPP - → H₂, D₂, Li, Be, B, C, N₂, O₂, Mg, Al, Si, P, S, Ar, K, Ca, Fe, Ni, Cu, Zn, Nb, Ag, Sn, W, Pt, Au, Hg, Pb, Bi, U, Na, Ti,V, Cr, Mn, Mo, I, Cd, Cs, Ba - Moreover, experimental setup with the full spectrometer would allow for a tagged neutron beam from fully constrained reaction pp \rightarrow p,n, π ⁺ # EUDET: test beam infrastructure for ILC - 21.5 M€ European funding, 2006-2009 - Open invitation to all to exploit the infrastructure П elix Sefkow ## ILC Beamline detectors - Many ILC physics measurements rely on the precise knowledge of the initial state: - luminosity - polarization - centre of mass energy - WW threshold: 5 MeV (50 ppm) - tt threshold and Higgs mass: ~50 MeV (100-200 ppm) - These require dedicated instruments in the interface between machine and detector: "MDI" - Tests of these and other beam diagnostic detectors can be done at SLAC's ESA #### **Beam Parameters at SLAC ESA and ILC** | Parameter | SLAC ESA | ILC-500 | | |--------------------|------------------------|------------------------|--| | Repetition Rate | 10 Hz | 5 Hz | | | Energy | 28.5 GeV | 250 GeV | | | Bunch Charge | 2.0 x 10 ¹⁰ | 2.0 x 10 ¹⁰ | | | Bunch Length | 300-500 μm | 300 μm | | | Energy Spread | 0.2% | 0.1% | | | Bunches per train | 1 (2*) | 2820 | | | Microbunch spacing | - (20-400ns*) | 337 ns | | ^{*}possible, using undamped beam # Spectrometry: A Reminder - Required measurement precision is set by the expected statistical and systematic errors of "benchmark" measurements of m_{top} , m_{higgs} : - require $\delta E_{\text{beam}}/E_{\text{beam}} \sim 100-200 \text{ ppm}$ - So far, only spectrometer techniques have come anywhere near this precision with very high energy electron beams - Previous efforts: - LEP2 - Achieved 120 ppm by combining three different methods, only one of which (BPM Spectrometer) is available at ILC - Spectrometer was able to do 170 ppm #### - SLC - WISRD systematic errors estimated at 220 ppm, $\sigma_{E}/E\sim20$ MeV - C of M was shifted by 46 ± 25 MeV (500 ppm) compared with Z lineshape scan - ⇒ Many constraints more severe at ILC than at low energy ⇒ Need R&D! # Two Spectrometers Designed for ILC "LEP-Type": BPM-based, bend angle measurement $$\theta_{\text{bend}}$$ = 3.8 mrad (LEP) ~ 0.2 mrad (ILC) $$\theta = \frac{ec}{p} \int B \cdot d\ell$$ → located in BDS, upstream of IR 100 ppm \rightarrow 0.5 μm over 30 m # T-474 Run I, Preliminary Results # T-474: BPM Local Resolution, Stability Resolution: BPM 9-11: ~350 nm in x BPM 3-5: ~ 700 nm in x, <40 ppm stability for 20k pulses ~ 30 min # T-474: Linking BPM Stations January 18, 2007 Mike Hildreth – IDTB07 NOTRE DAME # Current design (Example LDC, 20 mrad): Technology: Tungsten/sensor sandwich Wolfgang Lohmann ### BeamCal # Challenge: BeamCal - 15000 e⁺e⁻ per BX, MeV range, total 10 20 TeV - ~10 MGy dose per year - single electron detection capability - -Linearity and dynamic range - Readout speed (design stage) - -Compactness and granularity ### Beams available: SDALINAC (TU Darmstadt) JINR LINAC 800 Tinjector with bunch compressor beam currents from 1 to 100 nA ($10 \text{ nA} \approx 50 \text{ kGy/h}$) The testbeam setup exit window of beam line collimator (I_{Coll}) Faraday cup (I_{FC}, T_{FC}) sensor box (I_{Dia}, T_{Dia}, HV) Wolfgang Lohmann Results from 2006 (DALINAC) Si and diamond sensors: #### Si pad sensor #### Diamond sensor after ~7 MGy #### Plans for 2007/2008 - Repeat measurements with new diamond samples - Measurements with lower dose rates - Test alternative sensor materials - GaAs (produced by Russian Collaborators) - SiC (collaboration with BTU, Cottbus) - Rad. hard Si (BNL?) GaAs Segment prepared for tests ## ILC beamline instrumentation - Apologies for not including more... - Experiments at ATF2, KEK (Marc Ross) - Experiments at ESA, SLAC (Mike Woods) - Feedback on Nanosecond Timescale R&D (Christine Clark) - Collimator R&D (Andre Sopczak) # ILC Vertex detector - The power of having many precise 3D points measured close to the IP was demonstrated by the SLD CCD vertex detector at SLC - These precise points: - improve momentum resolution - indicate displaced vertices arising from heavy flavours - identifying the flavour and/or vertex charge: - study decays of Higgs and possibly other new particles - helps in combining jets to form W, Z, H, t in events with large numbers of jets - bb forward backward asymmetry - can help seed tracks (pattern recognition) # The Vertex Detector at the ILC Measure impact parameter, charge for every charged tracks in jets, and vertex mass. #### Need: - Good angular coverage with many layers close to vertex: - $> |\cos\theta| < 0.96.$ - > First measurement at r ~ 15 mm. - \rightarrow Five layers out to r \sim 60 mm. - > Efficient detector for very good impact parameter resolution - ▶ Material $\sim 0.1\% X_0$ per layer. - Capable to cope with the ILC beamstrahlungs background - Modest average power consumption < 100W</p> - \rightarrow Hit resolution better than 5 μ m. NOTE: 1/5 r_beampipe, 1/30 pixel area, 1/30 thickness c.f. LHC ### The Vertex Detector at the ILC - Approximately 10 different technologies under study for ILC vertex detector - All use silicon pixels - Sensitive window varies from single bunch (ie. <300ns), through 50us (20 time slices per train) to integration over the entire bunch train (1ms) # **ILC Pixel Technologies** ILC long bunch trains ~10⁹ pixels relatively low occupancy - DEPFET - MAPS - CPCCD - CAPS/FAPS - > SOI/3-D - > SCCD All assume **20** frames/train #### Read out in the gaps: - FPCCD - Chronopixel* - > ISIS *During bunch train to the level of digitised data # Beam Test Activity Summary Table Marco Battaglia | Beam | E (GeV) | Technology | Detector | Activity | Status | |-------------|--------------|------------|--|-----------------------------|-------------| | SPS X7, H2 | 120 GeV π | CMOS | MimosaX | Resolution, S/N, Efficiency | In Progress | | SPS X7, X5 | 120 GeV π | CMOS | Mimosa5 | Rad Hard, Backthinning | Completed | | SPS H2 | 120 GeV π | DEPFET | CGE,HE | Telescope Setup, Res. | Completed | | KEK PS | 4 GeV e- | CMOS | CAP | Telescope Setup, Res. | Completed | | DESY II | 3-6 GeV e- | CMOS | Mimosa5 | Resolution, Rad Hard. | Completed | | DESY II | 6 GeV e- | CMOS | MimosaX | Resolution,SN, | In Progress | | DESY II | 6 GeV e- | DEPFET | CGE,HE | S/N, Resolution | Completed | | DESY II | 6 GeV e- | DEPFET | CGE,HE | Inclined Tracks | Completed | | LBNL ALS | 1.5 GeV e- | CMOS | LDRD-1 | S/N,Inclined Trks,Rad Hard | Completed | | LBNL ALS | 1.5 GeV e- | CMOS | Mimosa5 | Backthinning, Inclined Trks | Completed | | LBNL ALS | 1.5 GeV e- | CMOS | Mimosa5 | Telescope Setup, Tracking | Completed | | LBNL ALS | 1.9 GeV e- | CMOS | MimoStar | S/N, r/o Tests | In Progress | | LBNL ALS | 1.9 GeV e- | CMOS | LDRD-2 | S/N, Tests, Resolution | In Progress | | LBNL LOASIS | 0.1-1 GeV e- | CMOS | etector R&D ar
LDRD _{II} I | Pair Response | In Progress | # Pixel Beam Telescope Summary Table | Telescope | Detector
Type | Pixel
Size
(µm) | Nb. of Planes | Plane Spacing (mm) | S/N | Extrapolation resolution (µm) | Beam | |------------------|--------------------------|-----------------------|---------------|--------------------|-----|-------------------------------|----------| | CAP@KEK
2004 | CMOS
CAP-1 | 22.5 | 3+1 | 35 | | 4 @46mm | 4GeV e- | | TPPT@LBNL 2006 | Thin
CMOS
Mimosa 5 | 17 | 3+1 | 17 | 14 | 6.5 @17mm
3.3 @ 5mm | | | DEPFET@CERN 2006 | DEPFET
CCG | 32 x 22 | 3+1 | 25 | 90 | 1 @25mm | 120GeV π | ## **EUDET JRA-1 Pixel Telescope** Dedicated Pixel Telescope to support ILC R&D effort part of EUDET program, funded in part by EU through "6th Framework Programme for Research and Technological Development" Workpackage foresee construction of Pixel Telescope based on CMOS Pixel sensors, integration of a large-bore, high-field (1.2T) magnet; Telescope to be commissioned and operated on DESY-II beamline 24/1 but built so can be moved to other beam test facilities, such as CERN; Telescope demonstrator based on thinned MimoSTAR chip, developed by IReS, in collaboration with LBNL for STAR HFT project: 7x7mm², 256x256 array, 30x30mm² pixels # **EUDET JRA-1 Pixel Telescope** #### Collaborative Effort CERN: Magnet DESY: Magnet, Support, Beam Telescope, CNRS: Beam Telescope CEA: Beam Telescope INFN: DAQ Geneva: DAQ MPI+Bonn: Infrastructures | (4) | Demonstrator | Final | | |---------------------|--------------------|------------------------------------|--| | Area (mm²) | 7.68 x 7.68 | 20.48 x 10.24 | | | Frame r/o | 1.6ms | 100µs | | | Chip
Jan 19, 200 | Analog,
col // | Digital, ILC Detector in-pixel CDS | | # LBNL-Fermilab Pixel Telescope Proposal Joint LBNL-Fermilab Proposal submitted to DOE for construction of Pixel Telescope similar to EUDET JRA-1; Stage-1 based on same CMOS MimoSTAR thin sensors as EUDET, optional Stage-2 adopting sensors derived by current US R&D effort; ### Proposed Task Sharing LBNL: Detector Testing, DAQ, Offline C++ Reco Fermilab Detector Testing, Mechanics, Installation, Offline Java Reco University Groups: Detector Testing, Online sw #### Proposed timeline: 2007: Simulation, Design and Back-thinning and Testing 2008: Testing, Mechanics, Assembly, Test at ALS Stage-1 deployed at Fermilab MBTF by end 2008. Marco Battaglia Beam tests are not only for single point resolution determination; Significant activities aimed at validating all aspects of performance for candidate sensors for an ILC Vertex Tracker: - detection efficiency; - pixel response vs. angle of incidence of particles; - **G4**+Digi simulation validation; - S/N response before/after sensors irradiation or post-processing; - tracking/vertexing in high density environments; - response to low energy pairs; - immunity from EMI; Until past year, facilities used for ILC VTX R&D almost completely relied on infrastructures legacy of LHC, HERA, over past year several new initiative started, tailoring specifics needs of current ILC R&D. Jan 19, 2007 ILC Detector R&D and Test Jan 2007 # ILC Tracking High precision in momentum determination is driven by mass resolution of recoil to leptonic Z⁰ $$M_{H} = 120 \text{ GeV}$$ $E_{cm} = 350 \text{ GeV}$ $L = 500 \text{ fb}^{-1}$ $$\delta p_t/p_t^2 = a \oplus b/(p_t \sin \theta)$$ ## ILC Tracking Good momentum resolution is also important for measuring the luminosity weighted E_{cm} using $$e^+e^- \rightarrow \mu^+\mu^-\gamma$$ - General goal for the full tracking system is - □ $\sigma(1/pt) \sim 5 \times 10^{-5} \text{ GeV}^{-1}$ (or better) - Note: 1/10 of LHC/LEP. ~1/6 material in tracking volume cf. LHC - Two approaches: Silicon and gaseous trackers ## The SiD Tracker - Integrated silicon strip tracker with uniform technology and a fully integrated forward tracking system - Minimal material in the tracking volume to reduce multiple scattering and secondary particle production - High precision in a compact tracking volume with B = 5T ## The SiD Tracker - Baseline tracker design has 5 barrel layers, 4+4 disk layers - Supports are carbon fiber / foam / carbon fiber sandwiches - Modules are mounted on the supports in a pinwheel design Sensors: Cut dim's: 104.44 W x 84 L Active dim's: 102.4 W x 81.96 L Boxes: Outer dim's: 107.44 W x 87 L x 4 H Support cylinders: OR: 213.5, 462.5, 700, 935, 1170 Number of phi: 15, 30, 45, 60, 75 Central tilt angle: 10 degrees Sensor phi overlap (mm): Barrel 1: 5.3 Barrel 2: 0.57 Barrel 3: 0.40 Barrel 4: 0.55 Barrel 5: 0.63 Cyan and magenta sensors and boxes are assumed to be at different Z's and to overlap in Z. Within a given barrel, cyan sensors overlap in phi as do magneta sensors. ### **Detector prototypes** #### CERN(A.Honma), IEKP-Karlsruhe, LPNHE-Paris, IEHP-Vienna, Hamamatsu Assembly 3 CMS sensors 28 cm strip long Read out: VA1+180UMC r.o and all VA1 r.o. 2 modules fabricated in Paris, bonding CERN on automated CMS system (Collab CERN-LPNHE) Assembly: Module = 10 GLAST sensors 90 cm strip long The full construction done at IEKP R.O. Pitch adapter + VA1 + 180UMC provided by Paris ## **DESY Beam test analysis** Correlation beam telescopes & Silicon detector, based on the CMS-4VA1 module htemp | Bias
voltage | S/N (MPV) | |-----------------|----------------| | 200 | 13.62 +/- 0.33 | | 260 | 15.79 +/- 0.29 | | 299 | 15.70 +/- 0.25 | | 350 | 16.52 +/- 0.73 | Signal from the CMS-4VA1 module 42 A. Savoy-Navarro, TBILCW'hp, FNAL, 011807 ## ZUUO & DEYUHU. CUHDIHEU LESI Testbeam with TPC Field Cage & strip layer surrounding it: SET(LDC) Test beam with pixel detectors: tests on internal tracking region & Vertex + Silicon tracker Testbeam with Si-W calorimeter & few Silicon strip layers in front: experience particle flow Detector K&D and Lest Beams A. Savoy-Navarro, TBILCW'hp, FNAL, 011807 # ILC gaseous tracking - For gaseous detectors, the TPC design gives the best performance because the data is recorded in 3D - pattern recognition - background tolerance - General design parameters: - r_outer = 1.5-2 m, length = 2-2.5 m - □ ~ 200 samples (each ~6 mm) - $\sigma(r,\phi) \sim 100 \mu m$, $\sigma(z) \sim 500 \mu m$ - □ two track resolution: ~2 mm (r,ϕ) and ~5 mm (z) - $\sigma(dE/dx) \sim 5\%$ # ILC challenge: $\sigma_{Tr} \sim 100 \, \mu m$ (all tracks 2 m drift) Classical anode wire/cathode pad TPC limited by ExB effects Micro Pattern Gas Detectors (MPGD) not limited by ExB effect Worldwide R&D to develop MPGD readout for the ILC TPC Jan 19, 2007 ILC Detector R&D and Test Beams 45 From: Madhu Dixit Examples of Prototype TPCs Carleton, Aachen, Cornell/Purdue, Desy(n.s.) for B=Oor1T studies Saclay, Victoria, Desy (fit in 2-5T magnets) Karlsruhe, MPI/Asia, Aachen built test TPCs for magnets (not shown) 27/11/2006 Kon Settles MPI-Munich Tsinghua Nov 2006 -- LCTPC Design Issues: R&D Planning 14 # **Facilities** Cern testbeam (not shown) Test Beam Area 22 EUDET Ron Settles MPI-Munich Tsinghua Nov 2006 -- LCTPC Desarran Issues: R&D Planning 15 # Transverse spatial resolution Ar+5%iC4H10 E=70V/cm $D_{Tr} = 125 \mu m/\sqrt{cm}$ (Magboltz) @ B= 1T ## Micromegas TPC 2 x 6 mm² pads - Charge dispersion readout Jan 19, 2007 Strong suppression of transverse diffusion at 4 T. #### **Examples:** $D_{Tr} \sim 25 \ \mu m / \sqrt{cm} \ (Ar/CH4 \ 91/9)$ Aleph TPC gas ~ 20 μ m/√cm (Ar/CF4 97/3) Extrapolate to B = 4TUse $D_{Tr} = 25 \mu m/\sqrt{cm}$ Resolution (2x6 mm² pads) $\sigma_{Tr} \approx 100 \ \mu m \ (2.5 \ m \ drift)$ ILC Detector R&D and Test Beams ### Confirmation - 5 T cosmic tests at DESY COSMo (Carleton, Orsay, Saclay, Montreal) Micromegas TPC $\underline{D_{Tr}} = 19 \ \mu \underline{m} / \sqrt{\underline{cm}, \ 2 \ x \ 6 \ mm^2 \ pads}$ $\sim 50~\mu m$ av. resolution (diffusion negligible over 15 cm) $100~\mu m$ over 2 meters appears feasible ($\sim 30~\mu m$ systematics Aleph TPC experience) 49 From: Madhu Dixit ## Phase II - Measurements with Large Prototype - LP will be used for: - ·Sector/panel shapes & pad geometry - •Gas studies - ·Positive ion space charge effects & gating schemes - ·LCTPC electronics - ·Choice of technology GEMs or MicroMegas - •Finally, the LP will be used to confirm that the ILC-TPC design performance can be reached at high magnetic field. - •Momentum resolution ~ $\Delta(1/p_T)$ ~ 1 × 10⁻⁴ (GeV⁻¹) - •2 track resolution ~ 2mm (r, φ) & ~ 5 mm (z) - •dE/dx ~ 5% From: Madhu Dixit ## ILC Calorimetry - The design challenge is to achieve high precision jet energy reconstruction - to reconstruct W,Z,H in multijet events - precisely measure vvWW (strong scattering?) - \square BR(H \rightarrow WW) - HHZ (Higgs self coupling) - HZ (Z hadronic) - jet energy resolution goal: 30% / √(E) - allows good discrimination of W and Z, similar to their natural widths. Needed for jet energies 50-150 GeV - □ ~ 60% / $\sqrt{(E)}$ achieved at LEP ## Particle flow paradigm - try to reconstruct every particle of the event in order to improve the jet energy resolution - visible energy of a typical jet - : \sim 60 % charged particles - : \sim 30 % photons - : ~ 10 % neutral hadrons - particle flow step-by-step - : use tracker to measure charged particle momentum - : use ECAL to measure photon energy - : use HCAL+ECAL to measure neutral hadron energy - : use tracker+ECAL+HCAL to disentangle charged from neutrals ## Jet energy resolution | particles
in jet | fraction of energy in jet | detector | single particle
resolution | jet energy
resolution | |---------------------|---------------------------|-----------|--|----------------------------| | charged particles | 60 % | tracker | $\frac{\sigma_{p_t}}{p_t} \sim 0.01\% \cdot p_t$ | negligible | | photons | 30 % | ECAL | $\frac{\sigma_E}{E} \sim 15\%/\sqrt{E}$ | $\sim 5\%/\sqrt{E_{jet}}$ | | neutral hadrons | 10 % | HCAL+ECAL | $\frac{\sigma_K}{E} \sim 45\%/\sqrt{E}$ | $\sim 15\%/\sqrt{E_{jet}}$ | $$\bullet \cdot \sigma_{jet} = \sigma_{charged} \oplus \sigma_{photon} \oplus \sigma_{neutral} \oplus \sigma_{confusion}$$ - confusion term comes from misassignment of energy to wrong particles due to double-counting, overlapping clusters, bad track-shower reconstruction etc - : improve confusion term by having better pattern recognition → highly granular calorimetry ## Challenge - role for calorimeters - : not so much as efficient energy measurement devices but mostly as imaging detectors to provide excellent 3D reconstruction of showers for very efficient pattern recognition and particle separation - strong interplay between hardware and software #### CALICE Collaboration - : formed to conduct the R&D effort needed to bring initial conceptual designs for the calorimetry to a final proposal suitable for an experiment at the future linear collider - 30+ institutes from 10+ countries from Europe, America, Asia organic growth, open invitation to join ## CALICE ECAL prototype #### full Si/W prototype (24 X_0) - ▶ 30 layers × 18 cm × 18 cm, interleaved with 0.5 mm Si pads - ▶ W absorber, 10+10+10 layers, 1.4 mm:2.8 mm:4.2 mm thick per respective layer - ▶ readout by 1 × 1 cm² cells, total: 9720 channels Si Wafer: 6×6 pads of detection (10×10 mm²) #### **HCAL** readout chain ### **CALICE Tail-Catcher Muon-Tracker Prototype** - Mechanical Structure/Absorber - "Fine" section (8 layers) - 2 cm thick steel - "Coarse" section (8 layers) - 10 cm thick steel - 16 Cassettes: - Extruded Scintillator Strips - 5mm thick - 5cm wide strips - Tyvek/VM2000 wrapping - Alternating x-y orientation - Readout - WLS Fiber - SiPM photo detection - Common readout with CALICE HCAL - Dimensions: - Length (along beam) 142 cm - Height 109 cm - Weight ~10 tons ILC Detector R&D and Test Beams Mechanical Structure Engineered and Assembled by Fermilab PPD ## **CALICE Testbeam at CERN 2006** (perspective view) (top view) ## Transverse granularity #### ECAL $18 \times 18 \text{ cm}^2$ Si cells of 1×1 cm² (216 cells per layer) #### HCAL 100×100 cm² scint.tiles of 3×3 , 6×6 , 12×12 cm² (216 tiles per layer) #### TCMT 100 \times 100 cm² scint.strips X or Y of 5×100 cm² (20 strips per layer) Tail Catcher - Muon Tracker (see talk by K.Francis) ### **CALICE testbeam at CERN** Run 300545:0 Event 5160 Time: 13:34:59:832:023 Sat Oct 14 2006 ECAL Hits: 32 Energy: 40.0841 mlps HCAL Hits: 223 Energy: 868.462 mips TCMT Hits: 14 Energy: 32.7715 mlps π^- 30 GeV ECAL threshold = 0.5 mip HCAL threshold = 0.5 mip TCMT threshold = 0.7 mip ## **Example pion event display** 40GeV/c pion with CALICE online analysis software **Kurt Francis** Late shower in HCAL ILC Detector R&I TCMT clearly needed to contain shower #### **CALICE Testbeam Plans for 2007-8** - Si ECAL + scint HCAL/TCMT - complete ECAL(transversally), complete HCAL(longitudinally), mount HCAL on movable/rotatable stage - : 2nd round of combined testbeam at CERN (summer 2007) - : move to FNAL-MTBF in fall 2007 #### todo list - data collection with complete instrumentation - scans with incidence angle variation - increase statistics at low energies (around 10 GeV) - extension of the energy range towards smaller energies (down to ~ 2 GeV) - proton/antiproton data collection - direct comparison with gaseous HCALs under identical beam conditions - #### **CALICE Testbeam Plans for 2007-8** #### ▶ · scint ECAL - : testbeam at DESY with small prototype in early 2007 - : testbeam at FNAL-MTBF with prototype completed, late 2007 #### ▶ · digital HCAL with RPCs, GEMs - : "slice" test at FNAL-MTBF, early 2007 - : start production of 1m³ prototype, early 2008 (?) - : join combined testbeams at FNAL-MTBF, late 2008 (?) #### ▶ · digital HCAL with μMegas - : build single chamber(s), first tests at CERN in 2007 - : build/test 1m² chamber(s) in 2008 # Concept of strip calorimeter GLD-ECAL-Scintillator-layer model - Sampling calorimeter with - scintillator and W for ECAL - scintillator and Pb (Fe) for HCAL - Realize fine granularity (effective segmentation ~1cm x 1cm) for PFA with strip structure - Huge number of readout channels for a ILC detector - ~10Mch for ECAL, - ~4Mch for HCAL - This is achieved by MPPC (or SiPM) readout - Clustering algorithm for the strip structure is under development. # scintillator - KURARAY : Mega strip plate - KNU (Kyungpook National U.) extruded and covered by TiO2 (Extruded Mega-strip under development) Amplifier Strip read-out ### **DHCAL Active Medium Candidates** Lei Xia # ALI E DHCAL Active medium R&D status | Measurement | European RPC | US RPC | GEM | mMegas | |----------------------------|--------------|---------|---------|---------| | Signal characterization | yes | yes | yes | yes | | HV dependence | yes | yes | yes | yes | | Single pad efficiencies | yes | yes | yes | | | Geometrical efficiency | yes | yes | | | | Tests with different gases | yes | yes | yes | | | Mechanical properties | ? | yes | | | | Multipad efficiencies | yes | yes | ongoing | | | Hit multiplicities | yes | yes | ongoing | | | Noise rates | yes | yes | ongoing | | | Rate capability | yes | yes | | | | Tests in 5 T field | yes | no | no | | | Tests in particle beams | yes | yes | ongoing | planned | | Long term tests | ongoing | ongoing | ongoing | | | Design of larger chamber | yes | yes | ongoing | ongoing | | Overall R&D | Done | Done | Ongoing | Started | CALICE Readout summary Lei Xia | n | | Item | DCAL | KPix | HaRDROC | |---|-------------------|---------------------------|-----------------|----------------|----------| | F | E ASIC | Current version | v2 | v3 | v1 | | | | Current ch#
/final ch# | 64/64 | 64/1024 | 64/64 | | | | Test | Almost done | Ongoing | Started? | | | | Additional submission | No | Yes | ? | | | | Overall status | Almost done | Ongoing | Ongoing | | S | Readout
system | Conceptual design | Done | Yes | ? | | Ť | or PS | FE board | Design finished | No | Started? | | | | Concentrator | Design started | Design started | No | | | | Data Collector | Design ongoing | No | No | | | | Trigger Timing module | Specified | No | No | | | | DAQ software | Started | Started | No | | | | Overall system | Well advanced | Started | No | - If funding permits, given current progress - ◆ The 1st PS stack would (naturally) be: RPC + DCAL based readout - ★ The 2nd PS stack would be: GEM + ? Readout - Jan bcAl⁰readout will be Valktatedriff ough the slice test (Apr.07, MTBF) # ECal with Integrated Electronics Ray Frey, U of Oregon #### Ongoing R&D Efforts: - CALICE silicon-tungsten ECal 2 parallel efforts: - Technology Prototype → "Eudet Module" (integrated electronics) - Physics Prototype → currently in test beam (electronics external) - MAPS ECal - Led by a sub-group of CALICE - More recent needs some proof of principle work before test beams - "U.S." silicon-tungsten ECal - Has developed only an integrated approach from the start # DREAM module: simple, robust, not intended to be "best" at anything, just test dual-readout principle ⊢2.5 mm⊣ ←—4 mm—— Back end of 2-meter deep module Physical channel structure J. Hauptman Fermilab Test Beams Workshop ## DREAM data 200 GeV π -: Energy response Scintillating fibers Scint + Cerenkov $$f_{EM} \propto (C/E_{shower} - 1/\eta_C)$$ (4% leakage fluctuations) Scint + Cerenkov $$f_{EM} \propto (C/E_{beam} - 1/\eta_C)$$ (suppresses leakage) Fermilab Test Beams Workshop ### DREAM module 3 scintillating fibers 4 Cerenkov fibers ## ILC-type module 2mm W, Pb, or brass plates; fibers every ~2 mm (Removes correlated fiber hits) ## PFA status PFA algorithms continue to be developed: jet energy reconstruction of full simulations getting close to target no shower simulation code, however, is reality need to continue program of tuning simulations to data - HCAL response to neutral hadrons not well understood (little data) - FNAL MIPP upgrade (incl. tagged neutrons) could help a lot p + Al at 67 GeV/c -> p X red: Geant4, blue: MARS, green: PHITS Jan 19, 2007 # Comparing with other methods for jet ## WARNING The stochastic term is not the only parameter From: Jean-Claude Brient A more complete law $\Delta E_j = a \times \sqrt{E_j} \oplus b \times E_j + c$ | | а | b | C (GeV) | |------------------------|------|------|---------| | ALEPH
method QPFLOW | 0.59 | 0 | 0.6 | | ATLAS
at best !! | 0.6 | 0.03 | 0 | | H1 | 0.5 | 0.05 | 0 | | PFLOW-ILC | 0.3 | 0 | 0.5 | NIM A360 (1994),480 AND the Angular Dependence!! # ILC detector future steps 4 detector concept groups transition to 2 fully engineered detectors... ## Summary - The precision ILC physics program presents many challenges to detector design - Test beams are essential to develop the detectors to reach the unprecedented performance goals - A lot of room for new ideas - existing R&D groups are open to new collaborators